1. Write an efficient algo to find longest recurring substring in a string e.g. in banana, it would be 'ana'
Ans : We can use suffix trees to implement this. I will post the exact solution soon
2. Write a function to find intersection of two strings. i.e. characters common to the strings.
For this, the most efficient solution would be to use 26 bits .. one for each character and put zero in all and then wen u encounter a character, just make the corresponding bit 1. For this, we ll need to traverse both the strings only once ands the extra memory that would be required would only be 26 bits :) O(n) solution
Welcome Message
Hi, welcome to my website. This is a place where you can get all the questions, puzzles, algorithms asked in interviews and their solutions. Feel free to contact me if you have any queries / suggestions and please leave your valuable comments.. Thanks for visiting -Pragya.
Top Navigation Menu
Showing posts with label suffix tree. Show all posts
Showing posts with label suffix tree. Show all posts
June 23, 2010
Inefficient O(n^2) Method of finding Largest Recurring Substring in a string
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
/**
* @author Pragya Rawal
*/
public class LargestSubstring {
public static void main(String[] args) {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
System.out.println("Enter String : ");
try {
String input = br.readLine();
LargestSubstring str = new LargestSubstring();
String largestSubstr = str.getLargestSubstr(input);
if (largestSubstr != null) {
System.out.println("Largest Recurring substring is : "
+ largestSubstr);
}
} catch (IOException e) {
e.printStackTrace();
}
}
public String getLargestSubstr(String input) {
if (null == input || input.length() == 0) {
System.out.println("Invalid / Empty string ...");
return null;
} else {
int length = input.length();
int subStrLen = 0;
String longestSubStr = "";
String currentStr = "";
for (int i = 0; i < length; i++) {
for (int j = i + 1; j < length; j++) {
int k = i;
int l = j;
while ((k < length) && (l < length) &&(input.charAt(k) == input.charAt(l)) ) {
currentStr += input.charAt(k);
k++;
l++;
subStrLen++;
}
if (longestSubStr.length() < currentStr.length()) {
longestSubStr = currentStr;
}
currentStr = "";
}
}
return longestSubStr;
}
}
}
import java.io.IOException;
import java.io.InputStreamReader;
/**
* @author Pragya Rawal
*/
public class LargestSubstring {
public static void main(String[] args) {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
System.out.println("Enter String : ");
try {
String input = br.readLine();
LargestSubstring str = new LargestSubstring();
String largestSubstr = str.getLargestSubstr(input);
if (largestSubstr != null) {
System.out.println("Largest Recurring substring is : "
+ largestSubstr);
}
} catch (IOException e) {
e.printStackTrace();
}
}
public String getLargestSubstr(String input) {
if (null == input || input.length() == 0) {
System.out.println("Invalid / Empty string ...");
return null;
} else {
int length = input.length();
int subStrLen = 0;
String longestSubStr = "";
String currentStr = "";
for (int i = 0; i < length; i++) {
for (int j = i + 1; j < length; j++) {
int k = i;
int l = j;
while ((k < length) && (l < length) &&(input.charAt(k) == input.charAt(l)) ) {
currentStr += input.charAt(k);
k++;
l++;
subStrLen++;
}
if (longestSubStr.length() < currentStr.length()) {
longestSubStr = currentStr;
}
currentStr = "";
}
}
return longestSubStr;
}
}
}
Labels:
DataStructure,
interview,
java,
Largest Recurring Substring,
Puzzle,
suffix tree
Subscribe to:
Posts (Atom)